Tetraterpene Synthase Substrate and Product Specificity in the Green Microalga Botryococcus braunii Race L.

نویسندگان

  • Hem R Thapa
  • Su Tang
  • James C Sacchettini
  • Timothy P Devarenne
چکیده

Recently, the biosynthetic pathway for lycopadiene, a C40 tetraterpenoid hydrocarbon, was deciphered from the L race of Botryococcus braunii, an alga that produces hydrocarbon oils capable of being converted into combustible fuels. The lycopadiene pathway is initiated by the squalene synthase (SS)-like enzyme lycopaoctaene synthase (LOS), which catalyzes the head-to-head condensation of two C20 geranylgeranyl diphosphate (GGPP) molecules to produce C40 lycopaoctaene. LOS shows unusual substrate promiscuity for SS or SS-like enzymes by utilizing C15 farnesyl diphosphate (FPP) and C20 phytyl diphosphate in addition to GGPP as substrates. These three substrates can be combined by LOS individually or in combinations to produce six different hydrocarbons of C30, C35, and C40 chain lengths. To understand LOS substrate and product specificity, rational mutagenesis experiments were conducted based on sequence alignment with several SS proteins as well as a structural comparison with the human SS (HSS) crystal structure. Characterization of the LOS mutants in vitro identified Ser276 and Ala288 in the LOS active site as key amino acids responsible for controlling substrate binding, and thus the promiscuity of this enzyme. Mutating these residues to those found in HSS largely converted LOS from lycopaoctaene production to C30 squalene production. Furthermore, these studies were confirmed in vivo by expressing LOS in E. coli cells metabolically engineered to produce high FPP and GGPP levels. These studies also offer insights into tetraterpene hydrocarbon metabolism in B. braunii and provide a foundation for engineering LOS for robust production of specific hydrocarbons of a desired chain length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L

The green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that...

متن کامل

Complete Chloroplast and Mitochondrial Genome Sequences of the Hydrocarbon Oil-Producing Green Microalga Botryococcus braunii Race B (Showa)

The green alga Botryococcus braunii is capable of the production and excretion of high quantities of long-chain hydrocarbons and exopolysaccharides. In this study, we present the complete plastid and mitochondrial genomes of the hydrocarbon-producing microalga Botryococcus braunii race B (Showa), with a total length of 156,498 and 129,356 bp, respectively.

متن کامل

Draft Nuclear Genome Sequence of the Liquid Hydrocarbon–Accumulating Green Microalga Botryococcus braunii Race B (Showa)

Botryococcus braunii has long been known as a prodigious producer of liquid hydrocarbon oils that can be converted into combustion engine fuels. This draft genome for the B race of B. braunii will allow researchers to unravel important hydrocarbon biosynthetic pathways and identify possible regulatory networks controlling this unusual metabolism.

متن کامل

Growth rate assessment of high lipid producing microalga Botryococcus braunii in different culture media

The green colonial microalga, Botryococcus braunii is well known for its high lipid content and has already been proposed as a renewable energy source for various aquaculture and biotechnological applications. However, due to its slow growth rate compared with other microalgae, B. braunii has not yet been used in mass culture to produce more biomass. Therefore, in this study we tested different...

متن کامل

Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B.

The green microalga Botryococcus braunii produces large amounts of liquid hydrocarbons and is classified into three races, depending on the type of the hydrocarbon produced. The B race produces two types of triterpenoid hydrocarbons, squalene and botryococcene, both of which are putative condensation products of farnesyl diphosphate. In an attempt to better understand the regulation involved in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS chemical biology

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2017